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Abstract. Among recent topics studied in context of feature selection
the hybrid algorithms seem to receive particular attention. In this paper
we propose a new hybrid algorithm, the flexible hybrid floating sequen-
tial search algorithm, that combines both the filter and wrapper search
principles. The main benefit of the proposed algorithm is its ability to
deal flexibly with the quality-of-result versus computational time trade-
off and to enable wrapper based feature selection in problems of higher
dimensionality than before. We show that it is possible to trade signifi-
cant reduction of search time for negligible decrease of the classification
accuracy. Experimental results are reported on two data sets, WAVE-
FORM data from the UCI repository and SPEECH data from British
Telecom.

1 Introduction

Feature selection, as a pre-processing step to machine learning and pattern recog-
nition applications, has been effective in reducing dimensionality. It is sometimes
the case that such tasks as classification or approximation of the data represented
by so called feature vectors, can be carried out in the reduced space more ac-
curately than in the original space. Liu and Yu [1] provide a comprehensive
overview of various aspects of feature selection. Their paper surveys existing
feature selection algorithms for classification and clustering, evaluation criteria
and data mining tasks and outlines some trends in research and development of
feature selection.

Many existing feature selection algorithms designed with different evaluation
criteria can be categorized into Filter [2], [3] Wrapper [4] and Hybrid [5], [6].
Filter methods rely on general characteristics of the training data to select some
features independently of the subsequent learning algorithm. Therefore they do
not inherit any bias of a learning algorithm. The wrapper methods require one
predetermined learning algorithm in feature selection and use its performance to
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evaluate and determine which features are selected. These methods tend to give
superior performance as they find features better suited to the predetermined
learning algorithm, but they also tend to be more computationally expensive.
When the number of features becomes very large, the filter methods are usually
to be chosen due to computational efficiency. To combine the advantages of both
methods, algorithms in a hybrid approach have recently been proposed to deal
with high dimensional data.

In this paper we introduce a flexible hybrid version of the floating search,
the hybrid sequential forward floating selection (hSFFS) as well as its backward
counterpart (hSBFS) that cross the boundary between filters and wrappers. We
show that it is possible to trade significant reduction of search time for negligible
decrease of the classification accuracy.

2 Motivation for Hybrid Algorithms

Filter methods for feature selection are general preprocessing algorithms that
do not rely on any knowledge of the learning algorithm to be used. They are
distinguished by specific evaluation criteria including distance, information, de-
pendency. Since the filter methods apply independent evaluation criteria with-
out involving any learning algorithm they are computationally efficient. Wrapper
methods require a predetermined learning algorithm instead of an independent
criterion for subset evaluation. They search through the space of feature subsets
using a learning algorithm, calculate the estimated accuracy of the learning al-
gorithm for each feature before it can be added to or removed from the feature
subset. It means, that learning algorithms are used to control the selection of
feature subsets which are consequently better suited to the predetermined learn-
ing algorithm. Due to the necessity to train and evaluate the learning algorithm
within the feature selection process, the wrapper methods are more computa-
tionally expensive than the filter methods.

The main advantage of filter methods is their speed and ability to scale to
large data sets. A good argument for wrapper methods is that they tend to give
superior performance. Because of the success of the sequential floating search
methods of filter type introduced by Pudil et al. [7] on many datasets and our
focus on real-world datasets with potentially large number of features and small
training sets, we have developed a hybrid floating selection algorithm that crosses
the boundary between filter and wrapper methods and emphasizes some of the
advantages of wrapper methods.

3 Hybrid Floating Sequential Search

Floating search methods [7], [8], sequential forward floating selection (SFFS) and
sequential backward floating selection (SBFS), are now considered to be standard
feature selection tools, providing good performance and close-to-optimum or
optimum results in most tasks [9], [10]. In the following we will focus on the
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sequential forward floating selection because it has proven appropriate for most
real-world datasets. The definition of the backward algorithm is analogous.

Starting from empty feature set, the SFFS procedure consists of applying af-
ter each forward (feature adding) step a number of backward (feature removing)
steps as long as the resulting subsets are better than previously evaluated ones
at that level. Consequently, there are no backward steps at all if the performance
cannot be improved. The algorithm allows a ’self-controlled backtracking’ so it
can eventually find good solutions by adjusting the trade-off between forward
and backward steps dynamically. It is possible to say that, in a certain way, it
computes only what it needs without any parameter setting. In this way it over-
comes effectively the so-called nesting problem inherent to older methods [11].

The same scheme can be used both in filter and wrapper context, as the float-
ing algorithms put no restrictions on the behavior of criterion functions (unlike,
e.g., Branch & Bound, which requires monotonic criteria). Here we introduce a
flexible hybrid version of the floating search, hybrid sequential forward floating
selection (hSFFS) that crosses the boundary between filters and wrappers. We
show, that only a fraction of full wrapper computational time is sufficient to
obtain results not too different from the full wrapper ones. This is accomplished
by taking use of filter criteria to avoid less promising subsets in wrapper com-
putation. The proportion of subsets to be passed to wrapper-based evaluation
can be specified by the user. In this way one can decide the trade-off between
the length of computation and criterion maximization effectiveness.

3.1 Formal Description of hSFFS

For the purpose of formal hSFFS description we use the following notion and
abbreviations: Let the number of all features be D and the full feature set be
XD = {xi, i = 1, . . . , D}. Due to the hybrid nature of the algorithm to be defined
we will distinguish two criterion functions. JF (.) denotes the faster but possibly
less appropriate filter criterion, JW (.) denotes the slower wrapper criterion. The
hybridization coefficient, defining the proportion of feature subset evaluations
to be verified by wrapper means, is denoted by λ ∈ 〈0, 1〉. Here �·� denotes
value rounding. Let SFS, SBS denote sequential forward selection and sequential
backward selection [11], respectively.

It is required that at each stage k all the so-far best subsets Xi and corre-
sponding criterion values Ji = J(Xi) are known for i = 1, . . . , k̃ with k̃ denoting
the largest subset size tested so-far (k < k̃ while backtracking).

Hybrid SFFS Algorithm
Initialization: The algorithm is initialized by setting k = 0 and X0 = ∅. Then,
Step 1 is called twice to obtain feature sets X1 and X2; to conclude the initial-
ization let J1 = JW (X1), J2 = JW (X2) and k = 2.
STEP 1: (Adding) By analogy to the SFS method, select from the set of
available features, XD \ Xk the best feature with respect to the set Xk, say x+,
and add it to the current set Xk to form new feature set Xk+1; to achieve this,
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first pre-select c+
k most promising candidate features by maximizing JF (·), then

decide according to the best JW (·) value, i.e.:

c+
k = max{1, �λ(D − k)�} (1)

C+
k = {xit , t = 1, . . . , c+

k : JF (Xk ∪ {xit}) ≥ JF (Xk ∪ {xj}) ∀j �= it} (2)

x+ = arg max
x∈C+

k

JW (Xk ∪ {x}), Xk+1 = Xk ∪ {x+}. (3)

STEP 2: (Inferior search path cancellation) If Jk+1 is known from before and
J(Xk+1) < Jk+1, set k = k + 1 and go to Step 1.
STEP 3: (Conditional removal) By analogy to the SBS method find the worst
feature in the set Xk+1, say x−; to achieve this, first pre-select c−k most promising
candidate features by maximizing JF (·), then decide according to the best JW (·)
value, i.e.:

c−k = max{1, �λk�} (4)

C−
k = {xit , t = 1, . . . , c−k : JF (Xk \ {xit}) ≥ JF (Xk \ {xj}) ∀j �= it} (5)

x− = arg max
x∈C−

k

JW (Xk+1 \ {x}). (6)

If JW (Xk+1 \ {x−}) = Jk, i.e., no better solution has been found, set Jk+1 =
J(Xk+1), k = k + 1 and go to Step 1; otherwise remove this feature from the
set Xk+1 to form a new feature set X

′

k, i.e.

X
′

k = Xk+1 \ {x−}. (7)

Note that now J(X
′

k) > J(Xk) = Jk. If k = 2, then set Xk = X
′

k and Jk = J(X
′

k)
and go to Step 1, otherwise set k = k − 1 and repeat Step 3.

Remark 1: Definitions (1) and (4) ensure that for any λ ∈ 〈0, 1〉 at least one
evaluation of JW (·) is done in each algorithm step for each tested subset size.
Remark 2: Algorithm Step 2 can be considered optional. It is defined to prevent
possible criterion decrease that may occur when the algorithm returns to higher
dimensionality after backtracking. Keeping intermediate criterion values as high
as possible is certainly desirable, yet as such cannot guarantee a better result.

3.2 Simplified Flowchart of the hSFFS

A simplified flowchart of the hSFFS algorithm is given in Fig. 1. The alternative
terminating condition k = d + δ in the flowchart allows premature termination
of the search process, should there be no reason to evaluate cardinalities greater
than d. In such a case it is good to let the algorithm reach a little higher di-
mensionality (d + δ) to allow possible find of a better solution for d by means of
backtracking. The value of δ can be selected arbitrarily, or estimated heuristi-
cally, e.g., as the longest backtracking sequence performed so-far. Nevertheless,
letting the algorithm finish (reach dimensionality D) is to be recommended. The
fact that floating search finds solutions for all cardinalities in one run is one of
its key advantages.
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Fig. 1. Simplified diagram of the hybrid SFFS

4 Experiments

4.1 Datasets

The performance of the proposed algorithm is illustrated on two datasets. We
used WAVEFORM data (40 features, 1692 samples from class 1 and 1653 sam-
ples from class 2) obtained via the UCI repository [12] and SPEECH data orig-
inating from British Telecom (15 features, 682 word “yes” and 736 word “no”
samples), obtained from the Centre for Vision, Speech, and Signal Processing of
the University of Surrey, UK.

4.2 Feature Subset Selection Criteria

We suppose, that the class-conditional densities are multivariate Gaussian, but
the parameters of the densities (i.e. mean vectors and covariance matrices) are
unknown and are replaced by their maximum likelihood estimates.

In the case of the filter model we used estimation of Bhattacharyya distance
as the independent criterion JF (·). A dependent criterion JW (·) used in the
wrapper model is the classification rate of the Bayes Gaussian plug-in classifier.
All classification rates have been verified by a 25-fold cross-validation.

4.3 Experimental Results

For each dataset the results are presented in two graphs. The first graph
(Figures 2 and 3) shows the Gaussian classifier correct classification rate on
best feature subsets selected by the hybrid SFFS for different values of the hy-
bridization coefficient λ as well as results of the filter SFFS and the wrapper
SFFS. The second graph (Figure 4) shows the times of complete hSFFS(λ) runs
for each λ. Note that floating search yields all subsets in one run, thus the graph
of time contains just a single line.
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It can be observed that especially for lower subset sizes the increase of λ
quickly improves the classification rate. The improvement of the classification
rate does not depend linearly on increased computational time. For the values
of λ less than roughly 0.5 the classification rate tends to increase considerably
faster than the time (an exception being, e.g., the 11 features case in Fig. 2).
This is quite important. It suggests that investing some additional time into
hybrid search with λ ≤ 0.5 brings relatively more benefit than investing all the
time needed for full wrapper based feature selection. The results for λ ≈ 0.5
tend to be closer to those of wrappers than those of filters. This positive effect
can be understood as an illustration of the ability of Bhattacharyya distance
to pre-select reasonable feature candidates for further evaluation in the Gaus-
sian wrapper. However, it also shows the limits of this Bhattacharyya ability.
A hypothetically perfect filter criterion would cause the hSFFS yield for each λ
the same best solution. The lack of such perfect criteria is the reason for using
wrapper based search.

Remark: This is not to say that the time complexity of the proposed hybrid
search is negligible. Obviously, it is to be expected considerably slower than the
time complexity of filter search, yet only a fraction of the time complexity of
wrapper search.

Fig. 2. SPEECH dataset: Comparison of classifier performance on feature subsets se-
lected by the hSFFS for different λ, the filter SFFS and the wrapper SFFS
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Fig. 3. WAVEFORM dataset: Comparison of classifier performance on feature subsets
selected by the hSFFS for different λ, the filter SFFS and the wrapper SFFS

Fig. 4. SPEECH and WAVEFORM datasets: Time complexity of the filter SFFS, the
hSFFS as a function of λ and the wrapper SFFS

5 Conclusions and Future Work

We have defined a flexible hybrid version of floating search methods for feature se-
lection. The main benefit of the proposed floating search hybridization is the pos-
sibility to deal flexibly with the quality-of-result vs. computational time trade-off
and to enable wrapper based feature selection in problems of higher dimensional-
ity than before. We have shown that it is possible to trade significant reduction of
search time for often negligible decrease of the classification accuracy.
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In the future we intend to ”hybridize” other search methods in a similar way
as presented here and to investigate in detail the hybrid behavior of different
combinations of various probabilistic measures and learning methods.
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